skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Naghsh, Narges Zarnaghi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    A significant challenge for future virtual reality (VR) applications is to deliver high quality-of-experience, both in terms of video quality and responsiveness, over wireless networks with limited bandwidth. This paper proposes to address this challenge by leveraging the predictability of user movements in the virtual world. We consider a wireless system where an access point (AP) serves multiple VR users. We show that the VR application process consists of two distinctive phases, whereby during the first (proactive scheduling) phase the controller has uncertain predictions of the demand that will arrive at the second (deadline scheduling) phase. We then develop a predictive scheduling policy for the AP that jointly optimizes the scheduling decisions in both phases. In addition to our theoretical study, we demonstrate the usefulness of our policy by building a prototype system. We show that our policy can be implemented under Furion, a Unity-based VR gaming software, with minor modifications. Experimental results clearly show visible difference between our policy and the default one. We also conduct extensive simulation studies, which show that our policy not only outperforms others, but also maintains excellent performance even when the prediction of future user movements is not accurate. 
    more » « less